An averaged space–time discretization of the stochastic p-Laplace system
نویسندگان
چکیده
We study the stochastic $p$-Laplace system in a bounded domain. propose two new space-time discretizations based on approximation of time-averaged values. establish linear convergence space and $1/2$ time. Additionally, we provide sampling algorithm to construct necessary random input an efficient way. The theoretical error analysis is complemented by numerical experiments.
منابع مشابه
an investigation about the appropriate stochastic modeling framework for agricultural insurance pricing
با توجه به اینکه بیمه محصولات کشاورزی در ایران بیشتر جنبه ای حمایتی دارد و خسارات گزارش شده عموما بیش از حق بیمه های دریافت شده است، در این پایان نامه به جهت تعیین قیمت بیمه محصولات کشاورزی (گندم دیم) از فرآیندهای نوفه شلیک به عنوان مدلی مناسب استفاده شده است. بر اساس داده های صندوق بیمه کشاورزی از خسارات اعلام شده در سال زراعی 1388-1389 گندم دیم، در این پایان نامه حق بیمه خالص و ناخالص این محص...
a study on construction of iranian life tables: the case study of modified brass logit system
چکیده ندارد.
15 صفحه اولDiscretization Error of Stochastic Integrals
Asymptotic error distribution for approximation of a stochastic integral with respect to continuous semimartingale by Riemann sum withgeneral stochasticpartition is studied. Effectivediscretization schemes of which asymptotic conditional mean-squared error attains a lower bound are constructed. Two applications are given; efficient delta hedging strategies with transaction costs and effective d...
متن کاملThe Optimal Discretization of Stochastic Differential Equations
We study pathwise approximation of scalar stochastic differential equations. The mean squared L2-error and the expected number n of evaluations of the driving Brownian motion are used for the comparison of arbitrary methods. We introduce an adaptive discretization that reflects the local properties of every single trajectory. The corresponding error tends to zero like c ·n−1/2, where c is the a...
متن کاملEfficient discretization of Laplace boundary integral equations on polygonal domains
We describe a numerical procedure for the construction of quadrature formulae suitable for the efficient discretization of boundary integral equations over very general curve segments. While the procedure has applications to the solution of boundary value problems on a wide class of complicated domains, we concentrate in this paper on a particularly simple case: the rapid solution of boundary v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2022
ISSN: ['0945-3245', '0029-599X']
DOI: https://doi.org/10.1007/s00211-022-01343-7